
LLNL-TR-523452

Simplifying Performance Analysis of
Large-scale Adaptive Scientific
Applications

A. Bhatele, T. Gamblin, B. T. N. Gunney, M.
Schulz, P. T. Bremer

January 19, 2012

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Simplifying Performance Analysis of Large-scale Adaptive
Scientific Applications

Abhinav Bhatele, Todd Gamblin, Brian T. N. Gunney, Martin Schulz, Peer-Timo Bremer
Center for Applied Scientific Computing

Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551, USA
{bhatele, tgamblin, gunneyb, schulzm, ptbremer}@llnl.gov

ABSTRACT
Performance analysis of parallel scientific codes is becoming
increasingly difficult due to the rapidly growing complexity
of applications and architectures. Existing tools fall short in
providing intuitive views that facilitate the process of per-
formance debugging and tuning. In this paper, we exploit a
recent idea of projecting and visualizing performance data
on the communication and hardware domain for faster, more
intuitive analysis of applications. We leverage several per-
formance analysis and visualization tools to showcase the
discovery of scalability bottlenecks in a structured AMR li-
brary. Using novel techniques to project per-phase timing
data, application data, and communication data on a com-
munication graph, we identify a previously elusive scaling
bottleneck in the library. We present solutions that mitigate
this problem, resulting in 22% improvement in the perfor-
mance for a 65,536-core run on an IBM Blue Gene/P system.

Categories and Subject Descriptors
C.4 [Performance of Systems — Performance attributes]

General Terms
Measurement, Performance

Keywords
data attribution, performance analysis, visualization, scala-
bility, adaptivity

1. INTRODUCTION
Adaptivity is becoming ubiquitous across the high perfor-

mance computing (HPC) software stack. At the application
level, computational techniques such as adaptive mesh re-
finement (AMR) are used to reduce the cost of numerical
solvers by increasing the solver resolution only for areas of
the domain where higher resolution is needed [1, 2]. At a
lower level, to ensure good performance, runtime libraries for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’12, June 25–29, 2012, Venice, Italy.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

adaptive codes dynamically redistribute the work generated
by their refinement techniques among processors in a paral-
lel system [3, 4]. Future exascale machines are expected to
require adaptivity at even lower levels of the software stack,
to distribute computational tasks among potentially hetero-
geneous compute resources, to balance power requirements
and to adjust to hardware faults [15].

Adaptivity at any level presents a special challenge for
users and developers of performance tools because it makes
tying measurements to their root causes a difficult task. In a
static domain decomposition, per-process performance mea-
surements can be easily associated with specific application
data. In adaptive codes such as AMR, a measurement on one
process may potentially be associated with many pieces of
the application data. Further, adaptive applications do not
strictly follow the bulk-synchronous computational model
traditionally used in HPC. Interspersed with the computa-
tion and ghost exchange phases of traditional HPC appli-
cations, an adaptive code may reorganize work using so-
phisticated overlay networks and communication patterns.
Performance measurements must therefore be carefully at-
tributed to particular phases of computation and specific
application data, in order to clearly identify the causes of
observed performance problems.

Correctly attributing performance measurements to their
causes requires understanding the complex relationships be-
tween different performance domains. Schulz et al. have
proposed techniques for understanding the relationship be-
tween statically decomposed application domains, HPC hard-
ware and inter-process communication [17]. In this paper,
we focus on understanding and exploiting such relationships
for dynamically decomposed application domains. In partic-
ular, we demonstrate the utility of projecting performance
data onto more intuitive domains to detect a subtle perfor-
mance problem in a highly scalable AMR code.

We introduce novel performance visualization and analysis
techniques and make the following key contributions:

1. We introduce methodologies to track performance in
adaptive applications.

2. We use these methodologies to study scalability and
performance of a structured AMR code.

3. We showcase visualization techniques that exploit the
relationship between phase-based timing data and the
communication domain of the application.

4. We present techniques to attribute application-specific
data such as flow of AMR patches in an overlay net-
work in the communication domain.

Using the methodologies and visualization techniques men-
tioned above, we demonstrate the careful unscrambling of
otherwise tangled measurements caused by adaptive sys-
tems. By attributing performance measurements directly
to their causes, we are able to visualize performance mea-
surements in the domains most intuitive to the user, which
are not necessarily where they are measured. We also show
that these techniques allow us to pinpoint a previously elu-
sive scalability problem within the load balancer of SAM-
RAI [7, 9], a highly scalable structured AMR library used
extensively in several large-scale DOE applications. We use
insights gained from projecting data on the communication
domain to perform targeted optimizations and to improve
the performance of SAMRAI. Results for a 65,536-core run
on a Blue Gene/P system show performance improvements
of nearly 22%. Our techniques also provide insights that
will enable us to redesign the load balancing algorithm to
remove the scalability problem completely in the future.

2. PROJECTING DATA ACROSS DOMAINS
Schulz et al. have developed a taxonomy of performance

data that divides measurements into three key domains.
These are the hardware domain, consisting of processors em-
bedded in a network with some topology; the application do-
main, comprised of information from the application’s sim-
ulated physical domain; and the communication domain,
comprised of abstract graphs with processes as nodes and
communication between them represented as edges. This
framework is called the HAC model (see Figure 1).

Application Domain
(Physical simulation space)

Hardware Domain
(Flops, cache misses,
network topology)

Communication
Domain

(Virtual topology)

Data
Analysis and
Visualization

Figure 1: The HAC model

Root causes of performance problems lie in one of these
domains, but their symptoms may lie in another. We pro-
pose new techniques for visualizing and analyzing perfor-
mance data that correlate symptoms to causes by projecting
performance data from one domain to another in order to
make correlations and root causes more clear.

The difficulty of projecting data across domains depends
on how much and how frequently the relationships between
domains change. For example, in a statically decomposed,
structured grid application, the domain decomposition is
fixed, and we can assume that per-process measurements
are associated with a particular chunk of the decomposed
application domain. In an AMR code, however, the phys-
ical domain is decomposed into variable sized units, which
can be moved dynamically from process to process. We must
therefore take special care to track the units as they move

around the system in order to detect a performance problem
that arises because of particular features in one part of the
application domain.

Similarly, for a structured grid code, most communica-
tion is regular. For example, many such codes use a simple
stencil-patterned ghost exchange among neighboring pro-
cesses. We can easily make assumptions about which pro-
cesses communicate and how much data will pass over each
communication link. However, if there are many phases with
very different communication patterns, we cannot attribute
all bandwidth to the same algorithm. Instead we must pro-
vide a more fine-grained analysis that can distinguish phases
and track many independent communication patterns.

In adaptive applications like AMR, this kind of dynamic
behavior is driven by the application, its domain decomposi-
tion, and its phase structure. The behavior also changes de-
pending on the particular problem being simulated. Perfor-
mance measurement tools must therefore be able to map per-
formance measurements pertaining to communication and
computation back to entities in the application domain in
order to find the root causes of performance problems.

In the remainder of this paper, we describe how we have
constructed inter-domain projections that track these rela-
tionships to unscramble the mess left by adaptivity. We use
these projections to create new, insightful visualizations in
more intuitive domains that clearly highlight root causes of
performance problems.

3. STRUCTURED ADAPTIVE MESH
REFINEMENT

In this paper, we study an application domain that is com-
plex and difficult to scale. Define: What is a cell and what is
a patch Structured adaptive mesh refinement (SAMR) is a
popular AMR technique. In SAMR, the mesh is a hierarchy
of successively finer mesh levels (Figure 2 shows a SAMR
mesh.) The bottom-most level spans the entire problem do-
main and its mesh is comprised of the largest cells. Meshes
in successively higher levels have increasing cell resolution.
AMR meshes are not globally refined; rather, each level is
comprised of a set of patches that contain only the cells in
areas needing refinement. Higher levels span smaller and
smaller portions of the computational domain. For data-
parallel implementations, the mesh can be partitioned by as-
signing one or more patches to a process. Large patches may
be broken into smaller patches by the partitioning process.
Standard SAMR applications consist of two operations: lo-
cal computation on individual patches, and coordinated data
exchange between neighboring/overlapping patches. The
latter requires communication between the processes that
own the patches.

SAMR introduces a great deal of complexity in parallel
mesh generation, as each level must be created based on the
complexity of solution features. This is a multi-step process.
Whether creating the level for the first time or replacing an
existing level, the SAMR library examines the solution at
the next coarser level to determine which grid cells need
more resolution. These cells are tagged and a reasonable set
of non-overlapping boxes is computed to cover them. For
parallel implementations, the boxes are partitioned among
the processes and subsequently used to create the new level.
Finally, the new level is populated with data from existing
levels and after which the the old level is discarded.

Figure 2: A simple two-dimensional structured AMR mesh with three levels of refinement (left). The same
mesh is shown as a hierarchy on the right. Cells that are refined are shown in gray.

The cost of SAMR remeshing is low for sequential pro-
grams but grows quickly as a job is scaled in parallel. Con-
ventional approaches for creating a mesh level with N boxes
have at least O(N) complexity. In a parallel algorithm, each
of the P processes must have at least one box, so the remesh-
ing cost is at least O(P) for both strong and weak scaling.
Conventional approaches do not parallelize easily, so their
sequential versions are often used, leading to a cost that
grows like O(P) in parallel. SAMRAI, a popular SAMR
library, uses a distributed mesh management approach to
parallelize remeshing to a large extent [8]. However, some
significant challenges still remain. Compared to the main
computation, SAMR remeshing has a high communication-
to-computation ratio. Also, SAMRAI’s extensive use of
asynchronous point-to-point communication makes parallel
performance difficult to analyze.

3.1 Current Performance
All runs in this paper use a weak scaling linear advection

(LinAdv) benchmark from the SAMRAI distribution. A si-
nusoidal wave is simulated passing through the domain and
the problem size is grown by tiling the domain. Three levels
of refinements and a refinement ratio of 2 are used. After
running a few time steps on the coarsest level, regeneration
of level 2 (the finest level) is selected for data collection. We
used the Blue Gene/P systems at Argonne National Labo-
ratory (Challenger and Intrepid) for the runs. Intrepid is
a 557.1 TFlop/s Blue Gene machine with 163,840 PPC450
cores and a three-dimensional torus interconnect.

Figure 3 presents the current scaling characteristics of the
LinAdv benchmark. The top (black) line represents the
overall iteration time, which includes the time for compu-
tation (solving) and remeshing (adaptation). The bench-
mark uses weak scaling, so perfect scaling is a flat line. The
computation or solving phase is entirely local with the ex-
ception of ghost exchange, and it scales well, so we omit
it here. The adaptive remeshing phase of SAMRAI (sec-
ond green line) grows slower than the characteristic O(P) of
conventional SAMR approaches. However, at 8,192 cores,
remeshing starts taking more time than computing the so-
lution. This represents a serious scaling problem, as large-
scale runs will not achieve good parallel efficiency if most of

 1e-07

 1e-06

 1e-05

 0.0001

256 512 1K 2K 4K 8K 16K 32K 64K 128K

W
al

l c
lo

ck
 t

im
e

pe
r

ce
ll

up
da

te
 (

s)

Number of cores

SAMRAI: Weak Scaling

solving and adaptation
adaptation

load balance

Figure 3: Weak scaling performance of SAMRAI for
the linear advection benchmark on Blue Gene/P.

their time is spent remeshing.
A significant fraction of remeshing cost beyond 8,192 cores

comes from load balancing (third orange line). The load
balancing step has an expected cost of O(logP) but exhibits
a behavior closer to O(P), making it an ideal candidate
for further examination using our tools. The remainder of
this paper describes the steps we took to diagnose its root
cause. For completeness, the next section describes the load
balancing algorithm used in SAMRAI.

3.2 Load Balancing in SAMRAI
Load balancing in SAMRAI has three phases: load dis-

tribution, mapping generation, and overlap update. Load
distribution starts with a set of boxes describing the extent
of the new level. These boxes represent new work load, but
they are not evenly distributed. SAMRAI attempts to as-
sign boxes to processes in a way that balances the number of
grid cells given to each process. Almost always, this requires
some boxes to be subdivided into smaller boxes. Mapping
generation constructs a mapping from pre-balance boxes to
post-balance boxes. This accounts for where the boxes trav-
eled on the network as well as whether the boxes were subdi-
vided at all. Overlap update uses the generated mapping to
update information about overlapping regions between the

new boxes and some reference boxes in the existing hierar-
chy, given the changes introduced by load distribution.

We will describe the load distribution steps for a sim-
ple three-process group, drawn as a tree in Figure 4, before
describing how to recursively build up the steps for bigger
groups. At the start of the algorithm, each process has some
load imbalance (excess or deficit load). The leaves, child 1
and child 2, send the imbalance information to the parent,
including any excess work. The parent places excess work
from itself and its children into a separate container des-
ignated as unassigned. It uses the unassigned work to fill
deficits where needed. If the parent has a deficit, it shifts
some unassigned work to itself. For each child that has a
deficit, it sends some unassigned work to that child After
shifting work to fill the deficits, no unassigned work remains
because the net imbalance at the parent is zero. This is true
here because the parent is the root of the entire tree. For
deeper trees, this will not be the case.

parent

child 1 child 2

Figure 4: Load balancing tree for partitioning three
processes. The parent partitions for all three nodes.

Figure 5 shows a deeper tree with seven processes. To
load balance this tree, parent 1, child 1 and child 2 apply
the above algorithm. Independently, parent 2, child 3 and
child 4 do the same. Because parents 1 and 2 are not at the
root of the tree, they may see an imbalance that represents
the imbalance of their subtree. To eliminate this imbalance,
they participate as children of the grandparent (see Figure
6) in another recursive instance of the same algorithm. For
deeper trees, the grandparents rely on their parents to cancel
their imbalances, and so on. The recursion stops at the root
of the tree, where the imbalances always cancel out.

grandparent

parent 1 parent 2

child 1 child 2 child 3 child 4

Figure 5: Load balancing tree of seven processes.

Once a process sends its excess boxes away, it loses track
of them. The mapping generation phase informs each pro-
cess of the final destinations of its boxes by sending this
information back to the original owner along the same path
the boxes took to their destinations. To each box in transit
within the tree, we attach metadata describing the path it
has taken. When a box is broken into smaller boxes, the
smaller boxes start with the path of the broken box and
build from there. Using this approach, we expect that no

grandparent

parent 1 parent 2

Figure 6: Tree for partitioning seven processes. The
grandparent partitions for itself and the parents.

box will travel more than O(logP) hops in the tree network.
We assume that the cost of shipping metadata around the
network is small compared to the cost of shipping appli-
cation compute data, which is much larger, so we do not
consider network bandwidth in this assessment.

At the end of load balancing, SAMRAI must compute the
overlaps between the new boxes on each level in the hier-
archy. A search for the overlaps that a process’s O(N/P)
boxes may have with the O(P) boxes on the level would
cost O((N/P) logP) +O(N logN). In addition, the search
requires an all-gather communication to place the existing
level’s N boxes in local memory to enable the search. SAM-
RAI can avoid this if it is given a mapping between the pre-
balance boxes and the post-balance boxes. So load balanc-
ing must include informing owners of the pre-balance boxes
where their original work ended up. This is the mapping
generation sub-phase of load balancing.

One or more of the three load balancing sub-phases is
responsible for the scalability problems that we see in the
timing plot. In the next section, we describe the techniques
we used to isolate the specific sub-phase and root cause.

4. PERFORMANCE VISUALIZATIONS
We now present a succession of unsuccessful and successful

attempts at discovering the scalability issues in SAMRAI
through visualization of performance data projected among
the three HAC domains. Based on the scaling behavior of
particular phases in SAMRAI, we identified in Section 3 that
the problem lies within the load balancing phase. However,
this is not sufficient to point us to the root cause of the
problem. Hence, the rest of the paper discusses performance
data and its visualization specifically for the load balancing
phase. As we discuss our projections and visualizations, we
also highlight various tools that were used to obtain the
performance data and create the visualizations.

4.1 Unhelpful Visualizations
Timing information obtained from running SAMRAI tells

us that the load balancing phase, specifically the commu-
nication in that phase, does not scale well as we increase
the number of processors. Hence, we started with measur-
ing the communication characteristics for the load balancing
phase. In order to obtain this data, we use the communi-
cation matrix module in PNMPI [16] to intercept MPI calls
and record a communication matrix. We use yEd, a graph
editor, to visualize the Graph Modeling Language (GML)
files output by this PNMPI module.

Figure 7 shows two visualizations of the communication
graph for 256 processes during the load balancing phase of
SAMRAI. The graph was obtained by profiling the LinAdv
benchmark on Blue Gene/P. On the left, the communication
is presented in the form of a matrix generating using mat-

Figure 7: Communication graph of 256 processes during the load balancing phase.

plotlib. We can deduce that the communication is sparse
but we can’t see any trends that would affect the perfor-
mance. On the right, the 256 processes are laid out in a
different fashion and connected by edges based on the com-
munication matrix. This visualization also does not con-
vey any meaningful information. It can be deduced that
the communication is not near-neighbor but many-to-many,
however, no inferences can be drawn about its efficiency.

One hypothesis for the poor scaling performance of the
load balancing phase was that the high diameter of torus
networks like those on Blue Gene/P was leading to network
latency problems for larger numbers of cores. For each box
that is moved, the tree overlay network used by the SAMRAI
load balancer guarantees a logarithmic number of virtual
hops on the network itself. However, it does not guarantee
a logarithmic number of physical hops on the torus network.
We projected our communication domain data into the hard-
ware domain by converting MPI ranks (endpoints) to hard-
ware addresses, and we computed the number of torus hops
required for each single link on the tree network.

Figure 8 shows a histogram with our results. Most mes-
sages sent during the load balancing phase travel fewer than
four hops. Our projection thus tells us that this is not a
sufficient number of hops to cause a latency problem in the
network. Next, we hypothesized that too many boxes were
being transferred over the hardware network between com-
municating pairs, causing a bandwidth problem. From our
communication profiling, we were able to measure that most
messages are smaller than 1200 bytes, which is below the
latency-bandwidth product for Blue Gene/P. We can thus
rule out network contention as the cause of the scalability
problem. Since, the communication graph did not provide
insights into the issue, we decided to obtain detailed tim-
ing information about the time spent in computation and
communication on each process.

We used mpiP [21] to obtain profile information for indi-
vidual MPI processes. It provides information such as total
time spent in MPI calls versus total application time and
also the top MPI calls and their respective call sites where
most of the time was spent. mpiP can be used to selec-
tively profile a code region by using MPI_Pcontrol and in
our case we use this feature to focus on the details of the
three sub-phases of the load balancing algorithm with the
intent to assign blame to specific sub-phases (as described

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12

N
um

be
r

of
 m

es
sa

ge
s

Number of hops

Load Balancing Phase

Figure 8: Histogram of the number of hops traveled
by messages during the load balancing phase.

in Section 3.2).
However, we can only turn profiling on or off in mpiP.

There is no mechanism to generate distinct profiles for dif-
ferent code regions within a single run. We use PNMPI to
virtualize mpiP so that multiple code regions can be profiled
at once using multiple instances of mpiP. We implemented a
PNMPI “switch” module that uses the integer passed in the
MPI_Pcontrol call to multiplex different instances of mpiP
for different phases, yielding distinct profiles for each phase.
This enabled us to obtain the time spent in the three load
balancing phases outlined above.

Figure 9 shows the sum of times spent by all MPI pro-
cesses in a particular load balancing sub-phase. The three
sub-phases, load distribution, mapping generation, and over-
lap update are referred to as phase 1, 2 and 3 respectively
in the rest of the paper. It appears that as we scale to
more and more processors, we spend increasingly more time
in phase 3. However, since each successive phase waits for
the completion of the previous one, the excessive time spent
in phase 3 might be a result of delays in phase 2 or even
phase 1. mpiP outputs timing information for each MPI
process and we next plotted the times spent by individual
MPI processes in each sub-phase of load balancing on 256
cores (see Figure 10). We can see that several processes are
actually spending a significant amount of the total load bal-
ancing time in phase 1 (tall red bars) rather than phase 3.

This does not show up in a traditional profiler because the
results are presented in aggregate, and we lose information
about behavior of the smaller number of slow processes in
phase 1. We hypothesize that processes that have a larger
fraction of the time spent in phase 2 or 3 might be waiting
for processes stuck in phase 1, i.e., load distribution.

 0

 20

 40

 60

 80

 100

 120

 140

 160

256 512 1024 2048 4096 8192 16384

Pe
rc

en
ta

ge
 t

im
e

Different phases of load balancing

phase1
phase2
phase3

Figure 9: Sum of times spent by all MPI processes
in different load balancing sub-phases.

Plotting timing information for different phases against a
linear ordering of MPI processes by their ranks only gets us
so far and is also unintuitive to the end user, since rank order
and its mapping to compute resources is arbitrarily imposed
by the MPI library and the scheduler. We must therefore
map this information to another domain and visualize it
there to truly understand what is going on. In particular, in
the next two subsections, we project this information onto
the hardware and communication domains to gain further
insights into the problem.

4.2 Projections on the Hardware Domain
We use the timing information collected from mpiP (that

has been presented in Figure 10) to color the nodes on the
physical torus by the time spent within a particular load
balancing sub-phase. We use Boxfish, a lightweight, interac-
tive visualization tool useful for projecting performance data
onto the three-dimensional torus (the hardware domain) of
Blue Gene machines.

Figure 11 shows the view generated by Boxfish when we
color each node on the torus by the time processes spent in
phase 1 of the load balancer. We see that the processes that
spend the most time in this phase are on the fourth plane of
the torus. A hot plane like this can indicate contention, but
we know (from the communication matrix) that messages
sent in the load balance phase are very small and that the
time here is most likely spent waiting.

However, the correlation stands out very strongly in the
figure. We looked at the layout of the load balance tree
itself, and we hypothesized that this plane was likely part of
a subtree in the SAMRAI load balancer’s overlay network.
This led us to project our performance information back
onto the SAMRAI communication domain, where we can
see the load balance traffic clearly.

4.3 Projections on the Communication Domain
As described in detail in Section 3.2, SAMRAI communi-

cates load variations and work loads (boxes) along a virtual

Figure 11: Boxfish showing the 256 nodes on a 8 ×
4× 8 torus colored by the time spent in sub-phase 1
of load balancing.

tree network. To understand the communication behavior,
we look at projections of phase timing data onto the commu-
nication domain, i.e., the load balancing tree. We construct
a pairwise communication graph among the MPI processes
for the load balancing phase, which looks like a binary tree,
and we color nodes by the time they spend in different sub-
phases of the load balancer.

Figure 12 (left) shows the virtual tree network used in the
load balancing phase with each node colored by the time
the corresponding MPI process spends in phase 1, i.e., load
distribution. Interestingly, in this view, we see that a par-
ticular sub-tree in the virtual topology or communication
graph is colored in orange/red, highlighting the processes
that spend the most time in phase 1. Further, from mpiP
output, we were able to ascertain that nearly 85% of this
time is spent in an MPI_Waitall where a child is waiting to
receive boxes from its parent. The problem escalates as we
go further down this particular sub-tree, which is reflected
in the increasing color intensity, i.e., processes farther away
from the root spend longer time in this phase.

Figure 12 (right) colors the nodes in the same tree net-
work by the initial load on each process before load balancing
starts. We see that loads of individual nodes are randomly
distributed over the tree and do not appear to be correlated
to the phase timings in the left diagram. However, the total
loads for each of the four sub-trees give us some indication
of what we’ll find next. Three of the four sub-trees (in var-
ious shades of blue in the left diagram) have 2.83, 2.87 and
3.1% more load than the average whereas one (the sub-tree
in red) has 9% less load than the average. This suggests
that load has to flow from three overloaded sub-trees to the
underloaded one to achieve load balance.

Since we established that processes in one sub-tree are
waiting for their parent to send them load, we color and
weight each edge by the number of boxes that the edge’s
child node receives from the parent. Figure 13 shows the
resulting graph. We can now see a flow bottleneck that hap-
pens from node 0 to node 129 and node 129 to node 130

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 50 100 150 200 250

T
im

e
(s

)
Different phases of load balancing (256 cores)

phase 1
phase 2
phase 3

Figure 10: Time spent in different load balancing sub-phases for 256 MPI processes on Blue Gene/P.

towards the top of the slowest sub-tree. Coloring the nodes
by the phase 2 or 3 timings did not present such a correla-
tion. However, we created similar visualizations for phase 1
timings on larger number of processors and we noticed the
same problem – a portion of the tree spends most of its time
waiting for boxes to percolate down the tree.

 0

 200

 400

 600

 800

 1000

 1200

256 512 1K 2K 4K 8K 16K 32K 64K 128K

#
 B

ox
es

Number of cores

Number of boxes sent down the tree

LinAdv

Figure 14: Maximum number of boxes sent on any
edge of the tree as a function of the number of pro-
cessors (on Blue Gene/P).

The problem becomes worse as we run on larger number
of processors because the maximum number of boxes to be
sent on a particular edge continues to increase. We plot this
in Figure 14 as a function of the number of processors. On
131, 072 cores, we send 56 times the number of boxes that
we send on 256 cores on any given edge in the tree. This
explains the scalability bottleneck (attributed to the load
balancing phase) that we observed in Figure 3. A tree net-
work was used for load balancing to place an upper bound
on the number of hops that load may have to travel on the
virtual network. However, the same tree network, because
it funnels load from subtrees through sparse edges near the
root, is susceptible to small variations in the initial distri-
bution of load. This leads to a flow problem [5] during load
balancing where a large number of boxes have to go through
a single edge to replenish an under-utilized sub-tree.

 0

 5e-07

 1e-06

 1.5e-06

 2e-06

 2.5e-06

 3e-06

 3.5e-06

 4e-06

 4.5e-06

256 512 1K 2K 4K 8K 16K 32K 64K

W
al

l c
lo

ck
 t

im
e

pe
r

ce
ll

up
da

te
 (

s)

Number of cores

Time spent in load balancing

Indirect send
Direct send

Figure 15: Reduction in load balancing time by
sending patches directly to their new destinations.

5. SOLUTION AND NEW RESULTS
In this section, we present preliminary solutions to mit-

igate the issue observed in the load balancing phase. To
reiterate, scalability in the load balancing phase is hindered
by a flow problem in the virtual tree topology: a particular
subtree needs to receive load from the remaining subtrees
and hence all traffic (in terms of metadata for boxes) has
to flow through one particular edge in the load distribu-
tion phase. We understand that eliminating this problem
requires the use of a different overlay network that prevents
this scenario and we plan to do rewrite the load balancers
in SAMRAI based on the results presented in this paper.

As initial steps and proof of concept, we reduce the amount
of data sent around the tree in two different ways. Part of
the data sent with each box is a history of where the box has
been. SAMRAI uses this in the mapping generation phase to
send data back to the box’s originating process. We changed
the algorithm to send the data directly to the originator in-
stead of through the tree overlay structure, allowing us to
eliminate the need for the extra data. As a consequence of
not sending data along the tree, the information gets back
to the originator in fewer hops (on both the tree and the
physical network) and we send less data per box.

This “direct send modification” leads to a reduction in the

0

1

129

2

66

130

193

3

35

67

98

131

162

194

225

4

20

36

51

68

83

99

114

5

13

21

28

37

44

52

59

6

11

15

18

23

26

30

33

7

9

10

12

14

16

17

19

8

22

24

25

27

2931

32

34

39

42

46

49

57
54

61

64

38

40

41

43

45

47

48

50

56
58

53

55

60

62

63

65

69

76

84

91

100
107

115

122

71

74

78

81

89

86

93 96

70

72

73
75

77

79

80

82

88

90

85

87

92

94 95
97

102
105

112

109

117

120

124
127

101

103104106

111

113

108110

116

118

119

121

123

125

126
128

132

147

163

178

195

210

226

241

133

140

148155

164

171
179

186

135

138

142

145

150

153

157

160

134 136

137

139

141
143

144

146

149151

152

154

156158

159

161

166

169

173

176

181

184

188
191

165

167

168

170

172
174

175

177

180

182

183

185

187 189 190

192

196

203

211

218

227

234

242

249

198

201

205

208

213

216

220

223

197

199
200

202

204

206

207

209

212

214

215

217

219

221

222

224

229

232

236

239

244

247

251

254

228

230

231

233

235

237
238

240

243

245

246

248

250

252

253

255

0

1

129

2

66

130

193

3

35

98

67

131

162

194

225

4

20

36

51

99

114

68

83

5

13

21

28

37

44

52

59

6

11

15

18

23

26

30

33

7

9

10

12

14

16

17

19

8

22

24

25

27

2931

32

34

39

42

46

49

54
57

61

64

38

40

41

43

45

47

48
50

53
55

56

58

60

62

65

63

100
107

115

122

69

76

84

91

71

74

78

81

86

89

93 96

70

72

73

75

77

79

80

82

85

87

88
90

92

94 95
97

102
105

109

112

117

120

124
127

101

103
104106

108

110

111 113

116

118

119

121

123

125

126
128

132

147

163

178

195

210

226

241

133

140

148
155

164

171
179

186

135
138

142

145

150

153
157

160

134 136

137

139

141
143

144

146

149151

152

154
156

158

159161

166

169

173

176

181

184

188
191

165

167

168

170

172 174

175

177

180

182

183

185

187 189 190

192

196

203

211

218

227

234

242

249

198

201

205

208

213

216

220

223

197
199

200

202

204

206

207

209

212

214

215

217

219

221

222

224

229

232

236

239

244

247

251

254

228

230

231

233

235

237

238
240

243

245

246

248

250

252

253

255

Figure 12: Phase timing data and load information visualized in the communication domain – the virtual
tree network of the load balancing phase (256 processes on Blue Gene/P). On the left, the nodes are colored
by the time spent in phase 1 i.e., load distribution. On the right, the nodes are colored by the load in terms
of the number of cells.

load balancing time (as shown in Figure 15). Compared to
the old scheme, using direct sends, we get a 21% perfor-
mance improvement at 256 cores and 36% at 65,536 cores.
This reduction in the time for load balancing leads to an im-
provement in the overall execution time per iteration (solv-
ing plus adaptation) by 6%.

As a second step, we target the reduction of the number
of boxes being sent around by increasing the size of each box
in terms of the number of cells it holds. Increasing this size
has the effect of including more untagged cells in the level
generated. It also reduces the choices the load balancer has
when breaking up a box. The default value for the box
size is (5, 5, 5) cells. We ran experiments with three larger
box sixes and recorded the maximum number of boxes sent
on any edge along with the timing information. Figure 16
presents the reduction in the maximum number of boxes
sent along any edge of the tree. We get better results as we
continue to increase the box size. On 65,536 cores, using (7,
7, 7) boxes, roughly half the number of boxes are sent on
any given link. This reduces to 18 times fewer boxes when
the box size is changed to (9, 9, 9) cells.

Changing the box size leads to a reduction in the amount
of traffic on the overlay network, which translates into a re-
duction of the time spent in load balancing (see Figure 17).
Compared to the default box size, using (7, 7, 7) boxes, load
balancing is completed in nearly half the time on 65,536
cores. This time reduces even further with larger boxes for
large core counts. In spite of the increased computation re-
sulting from having more cells per box, increasing the box
size still leads to a reduction in overall time per iteration
(spent in solving plus adaptation). This might be due to
lower overheads from handling fewer boxes during the solv-
ing phase. At 65,536 cores, we get a performance benefit of
more than 16% by creating slightly larger boxes. Comparing

 0

 100

 200

 300

 400

 500

 600

 700

256 512 1K 2K 4K 8K 16K 32K 64K

#
 B

ox
es

Number of cores

Number of boxes sent down the tree

box size 5,5,5
box size 7,7,7
box size 9,9,9

box size 11,11,11

Figure 16: Reduction in maximum number of boxes
sent on any edge of the tree by increasing the size
of each box.

with the baseline performance, using the two optimizations
together gives a performance benefit of 25% on 256 cores
and nearly 22% on 65,536 cores in the overall runtime.

6. RELATED WORK
Prior work has investigated the parallel measurement of

per-process load balance data and its attribution to source
code [6, 10, 18, 19]. Two of these techniques complement
this work by enabling scalable parallel data collection for
the type of per-process data we collect here, and by allow-
ing code to be automatically sliced into phases and regions
based on callpaths. However, these techniques do not allow
the projection of application or other domain data onto ab-
stract communication graphs to analyze the root causes of
performance problems.

0

1

129

2

66

130

193

3

35

67

98

131

162

194

225

4

20

36

51

68

83

99

114

5

13

21

28

37

44

52

59

6

11

15

18

23

26

30

33

7

9

10

12

14

16

17

19

8

22

24

25

27

2931

32

34

39

42

46

49

57
54

61

64

38

40

41

43

45

47

48

50

56
58

53

55

60

62

63

65

69

76

84

91

100
107

115

122

71

74

78

81

89

86

93 96

70

72

73
75

77

79

80

82

88

90

85

87

92

94 95
97

102
105

112

109

117

120

124
127

101

103104106

111

113

108110

116

118

119

121

123

125

126
128

132

147

163

178

195

210

226

241

133

140

148155

164

171
179

186

135

138

142

145

150

153

157

160

134 136

137

139

141
143

144

146

149151

152

154

156158

159

161

166

169

173

176

181

184

188
191

165

167

168

170

172
174

175

177

180

182

183

185

187 189 190

192

196

203

211

218

227

234

242

249

198

201

205

208

213

216

220

223

197

199
200

202

204

206

207

209

212

214

215

217

219

221

222

224

229

232

236

239

244

247

251

254

228

230

231

233

235

237
238

240

243

245

246

248

250

252

253

255

Figure 13: Phase timing data visualized in the communication domain – the virtual tree network of the load
balancing phase (256 processes on Blue Gene/P). The nodes are colored by the time spent in phase 1 and
the edges by the number of boxes received by a child from its parent.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

256 512 1K 2K 4K 8K 16K 32K 64K

W
al

l c
lo

ck
 t

im
e

(s
)

Number of cores

Time spent in load balancing

box size 5,5,5
box size 7,7,7
box size 9,9,9

box size 11,11,11

Figure 17: Improvement in load balancing time by
making fewer boxes.

Tallent et al. have investigated automatic discovery of
scalability bottlenecks at particular phases of program exe-
cution, also based on callpaths [20]. This work complements
our work by providing automatic detection of the initial scal-
ability bottleneck we noticed in the SAMRAI load balancer.
Again, though, this work only supports visualizations of how

 10

 15

 20

 25

 30

 35

 40

256 512 1K 2K 4K 8K 16K 32K 64K

W
al

l c
lo

ck
 t

im
e

(s
)

Number of cores

Time spent in solving and adaptation

box size 5,5,5
box size 7,7,7
box size 9,9,9

box size 11,11,11

Figure 18: Improvement in overall time (solving plus
adaptation) by making fewer boxes.

the observed data relates to the application source code, and
not how it relates to application semantics.

Finally, many existing parallel performance tracing frame-
works [11–14,22] attempt to visualize the behavior of large-
scale parallel programs, either by visualizing communica-
tion between processes, by visualizing hardware metrics on
a torus, or by examining communication traces using three-
dimensional views. None of these, however, support the pro-
jection of application data into performance domains or vice
versa, limiting their ability to pinpoint performance bot-
tlenecks through the kind of correlation analysis presented
here.

7. SUMMARY
We have presented a case study of performance analysis

for a structured adaptive mesh refinement library to identify
hard-to-detect scalability issues. We used the HAC model
to project data from one performance domain to another to
better attribute performance problems to their root causes.
In the case of SAMRAI, we were able to exploit the rela-
tionships between different domains, particularly, applica-
tion and communication, to identify scalability issues in the
load balancing phase. We believe that the process outlined
in this paper and the visualization techniques presented are
generally applicable and specially useful for adaptive scien-
tific codes.

We also presented some preliminary solutions to mitigate
the scalability problems in SAMRAI. Our performance anal-
ysis techniques helped us to pinpoint the scalability prob-
lems of the SAMRAI load balancer in the communication
domain. This enabled us to identify hot spots in the com-
munication patterns as well as their cause, and led us to two
optimization techniques. By reducing the amount of traffic
and the amount of data going through these hot-spots on
the overlay tree network, we demonstrated an improvement
of up to 22% in overall execution time. We realize that com-
pletely eliminating the flow problem during load balancing
in SAMRAI requires the use of a different overlay network
that prevents this scenario and we plan to do rewrite the
load balancers in SAMRAI in the future.

Acknowledgments
This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344 (LLNL-TR-
523452).

8. REFERENCES
[1] M. J. Berger and P. Colella. Local adaptive mesh

refinement for shock hydrodynamics. J. Comput.
Phys., 82:64–84, May 1989.

[2] M. J. Berger and J. Oliger. Adaptive mesh refinement
for hyperbolic partial differential equations. Journal of
Computational Physics, 53(3):484 – 512, 1984.

[3] R. K. Brunner and L. V. Kalé. Handling
application-induced load imbalance using parallel
objects. In Parallel and Distributed Computing for
Symbolic and Irregular Applications, pages 167–181.
World Scientific Publishing, 2000.

[4] U. Catalyurek, E. Boman, K. Devine, D. Bozdag,
R. Heaphy, and L. Riesen. Hypergraph-based dynamic

load balancing for adaptive scientific computations. In
Proc. of 21st International Parallel and Distributed
Processing Symposium (IPDPS’07), pages 1–11. IEEE,
2007. Best Algorithms Paper Award.

[5] P. Elias, A. Feinstein, and C. Shannon. A note on the
maximum flow through a network. Information
Theory, IRE Transactions on, 2(4):117 –119,
december 1956.

[6] T. Gamblin, B. R. de Supinski, M. Schulz, R. J.
Fowler, and D. A. Reed. Scalable load-balance
measurement for SPMD codes. In Supercomputing
2008 (SC’08), pages 46–57, Austin, Texas, November
15-21 2008.

[7] B. T. Gunney, A. M. Wissink, and D. A. Hysom.
Parallel clustering algorithms for structured amr.
Journal of Parallel and Distributed Computing,
66(11):1419 – 1430, 2006.

[8] B. T. N. Gunney. Large-scale dynamically adaptive
structured AMR. SIAM Conference on Parallel
Processing for Scientific Computing, Februrary 2010.
UCRL-PRES-422996.

[9] R. D. Hornung and S. R. Kohn. Managing application
complexity in the samrai object-oriented framework.
Concurrency and Computation: Practice and
Experience, 14(5):347–368, 2002.

[10] K. Huck and J. Labarta. Detailed Load Balance
Analysis of Large Scale Parallel Applications. In
International Conference on Parallel Processing
(ICPP), San Diego, CA, USA, September 13-16 2010.

[11] K. A. Huck and A. D. Malony. Perfexplorer: A
performance data mining framework for large-scale
parallel computing. In Proceedings of the 2005
ACM/IEEE conference on Supercomputing, SC ’05.
IEEE Computer Society, 2005.

[12] J. Mellor-Crummey, R. Fowler, and G. Marin.
HPCView: A tool for top-down analysis of node
performance. The Journal of Supercomputing,
23:81–101, 2002.

[13] W. E. Nagel, A. Arnold, M. Weber, H. C. Hoppe, and
K. Solchenbach. VAMPIR: Visualization and analysis
of MPI resources. Supercomputer, 12(1):69–80, 1996.

[14] L. D. Rose, Y. Zhang, and D. A. Reed. Svpablo: A
multi-language performance analysis system, Sept.
1999.

[15] V. Sarkar. Exascale software study: Software
challenges in extreme scale systems. Technical report,
2009.

[16] M. Schulz and B. R. de Supinski. PNMPI Tools: a
Whole Lot Greater than the Sum of their Parts. In
Proceedings of the 2007 ACM/IEEE conference on
Supercomputing, 2007.

[17] M. Schulz, J. Levine, P.-T. Bremer, T. Gamblin, and
V. Pascucci. Interpreting performance data across
intuitive domains. In Parallel Processing (ICPP), 2011
International Conference on, pages 206–215,
September 2011.

[18] N. Tallent, J. Mellor-Crummey, M. Franco,
R. Landrum, and L. Adhianto. Scalable Fine-grained
Call Path Tracing. In Proceedings of the International
Conference on Supercomputing, June 2011.

[19] N. R. Tallent, L. Adhianto, and J. M.
Mellor-Crummey. Scalable identification of load

imbalance in parallel executions using call path
profiles. In Proceedings of IEEE/ACM Supercomputing
’10, Nov. 2010.

[20] N. R. Tallent, J. M. Mellor-Crummey, L. Adhianto,
M. W. Fagan, and M. Krentel. Diagnosing
performance bottlenecks in emerging petascale
applications. In Proceedings of IEEE/ACM
Supercomputing ’09, Nov. 2011.

[21] J. Vetter and C. Chambreau. mpiP: Lightweight,
Scalable MPI Profiling.
http://mpip.sourceforge.net.

[22] F. Wolf, B. Wylie, E. Abraham, D. Becker, W. Frings,
K. Fuerlinger, M. Geimer, M.-A. Hermanns, B. Mohr,
S. Moore, and Z. Szebenyi. Usage of the SCALASCA
Toolset for Scalable Performance Analysis of
Large-Scale Parallel Applications. In Proceedings of
the 2nd HLRS Parallel Tools Workshop, Stuttgart,
Germany, july 2008.

